Bharati Vidyapeeth Deemed University

Faculty of Engineering and Technology Revised Structure of Ph. D. Coursework Mechanical Engineering

(With effect from Academic Year 2017-18)

Sr.	Subject	Teaching Scheme		Examination Scheme (marks)			Credits
No.		L	P/D	Theory Examination	Presentations	Total	Credits
1	Paper –I: Research Methodology	4	-	100	-	100	04
2	Paper- II: Advances in Mechanical Engineering	4	-	100	-	100	04
3	i) Literature survey presentation ii) Presentation of idea of research*	-	02		50	50	02
	Total	08	04	200	100	300	12

Note: *- The student will have to give presentation based on the literature survey and idea of research and shall submit copy of the presentation to the respective Head of the Constituent Unit which is his/her place of research.

BHARATI VIDYAPEETH DEEMED UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY

Ph.D. Course-work Syllabus for Mechanical Engineering

	Paper-I: Research Methodology	
TEACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:
Lectures: 4 Hours/Week	Theory Examination: 100 Marks	Total Credits: 04
	Duration : 3 Hrs	
Course Objectives:		

- begin to formulate researchable problem in areas of research interest;
- write a research proposal or report;
- make appropriate choices about research strategies;
- review literature judiciously and systematically;
- understand and begin to apply the principles of collecting suitable data;
- understand and begin to conduct appropriate analyses of data;
- make appropriate choices about quantitative methods;

• demo	onstrate sensitivity to ethical issues raised by researchers;		
	Topics Covered		
UNIT-I	Types and Characteristics of Research		
	Definition and objectives of research, Characteristics of research, Types of		
	research- Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative		
	vs. Qualitative, Conceptual vs. Empirical, Overview of research		
	methodology in various areas of engineering, Introduction to problem		
	solving, basic research terminology such as proof, hypothesis, lemma etc.,		
	Role of information and communication technology (ICT) in research.		
UNIT-II	Review of Literature	(6 Hours)	
	Importance of literature review in defining a research problem, sources of		
	literature, identifying the gap areas from the literature review		
	Searching for publications: Publication databases, search engines and patent		
	databases etc.		
UNIT-III	Research Problem Formulation	(6 Hours)	
	Research problem formulation, determine the scope, objectives, limitations		
	and assumptions of the identified research problem, justify basis for		
	assumption, developing the objectives		
	Developing a research plan: Exploration, description, diagnosis and		
	experimentation		
UNIT-IV	Methods of Data Collection	(6 Hours)	
	Static and dynamic characteristics of instruments used in experimental set		
	up, calibration of various instruments, sampling methods, various methods		
	of data collection, selection of appropriate method for data collection, data	_	

	collection using a digital computer system, case studies of data collection.	
UNIT-V	Inferential Statistics and Hypothesis Testing	(6 Hours)
	Data processing, data analysis strategies and tools, Basic concepts	
	concerning testing of hypotheses, procedures of hypothesis testing,	
	generalization and interpretation, Hypothesis testing: Z-test, T-test, Chi	
	Square test, Analysis of variance (ANOVA) etc.	
UNIT-VI	Quantitative Methods and Applied Statistics	
	Measurement of central tendency and dispersion, Probability distribution,	
	Regression analysis, Parameter estimation, Multivariate statistics, Principal	
	component analysis, moments and response curve methods, probable errors	
	in research, error analysis, Hidden Markov Model (HMM)	
UNIT-VII	· · · · · · · · · · · · · · · · · · ·	
	Role of computers in research, maintaining literature data using software	
	tools such as Mendeley, Endnote2 etc., tabulation and graphical	
	presentation of research data, use of statistical software tools such as Excel,	
	R, SPSS, GRETL, MINITAB etc. in research, use of word processing tools	
	such as Latex, software tools for making effective presentation.	
UNIT-VIII	Developing Research Report: Structure and components of scientific	(6 Hours)
	reports, types of report, developing research report.	
	Thesis Writing: Different steps and software tools in the design and	
	preparation of thesis, layout, structure and language of typical reports,	
	Illustrations and tables, bibliography, referencing and footnotes.	
	Oral Presentation: Creating and making effective presentation, use of	
	visual aids, importance of effective communication.	
UNIT-IX	Research Ethics and IPR	(6 Hours)
	Ethics: ethical issues in research, plagiarism tools and its importance.	, , , , , , , , , , , , , , , , , , ,
	IPR: intellectual property rights and patent law, techniques of writing a	
	Patent, filing procedure, technology transfer, copy right, royalty, trade	
	related aspects of intellectual property rights.	
UNIT-X	Publishing of research work	(6 Hours)
_	Design of conference and journal research paper, design of review paper,	- 3/
	effective way of writing abstract, introduction, result and discussion and	
	conclusion in research papers, answering the queries of reviewers.	
	Importance of publication in standard databases such as Scopus, Web of	
	science etc., understanding of h-index, citation index and impact factor.	
	serence etc., understanding of it index, citation index and impact factor.	<u> </u>
Text	Books/References:	
	Goddard, Stuart Melville, Research Methodology: An Introduction, Juta and Co	mpany Ltd.
2004	, , , , , , , , , , , , , , , , , , ,	1 . 7
	umar, Research Methodology: A Step by Step Guide for Beginners, SAGE pub	olications
2. Kanju K	put	71104110113

	Ltd., 2011.
3.	C. R. Kothari ,Research Methodology: Methods and Trends, New Age International, 2004
4.	S.D. Sharma, Operational Research, Kedar Nath Ram Nath & Co.,1972
5.	B.L. Wadehra, Law relating to patents, trademarks, copyright designs and geographical
	indications, Universal Law Publishing, 2014.
6.	Donald Cooper, Pamela Schindler, Business Research Methods, McGraw-Hill publication, 2005.
7.	T. W. Anderson, An introduction to Multivariate Statistical Analysis, Wiley Eastern Pvt. Ltd. New Delhi.
8.	A. Fink, Conducting Research Literature Reviews: from the internet to paper, Sage Publications, 2009
9.	R. A. Day, How to write and publish a scientific paper, Cambridge University Press, 1992

	Paper-II Spe	cific Subject: Advances in Mechanical E	Ingineering	
TEACHIN	IG SCHEME:	EXAMINATION SCHEME:	CREDITS	ALLOTTED:
Lectures: 4 Hours/Week		Theory Examination: 100 Marks	Total credits: 04	
		Duration : 3Hrs.		
Topics cov	ered		1	
UNIT-I	Optimization Met	nods		(06 Hours)
	Basic Concepts of	of Optimization- Convex and Concave	e Functions,	
	Necessary and suff	icient conditions for Stationary Points.	•	
	_	Optimization: Optimum problem		
		Bracketing methods, region-Elimination		
		nization: Optimality criteria, Unidirect		
	Direct search method	od- Evolutionary optimization, Simplex s	earch.	
UNIT-II	Measurement Tecl	-		(06 Hours)
		t: Theory &classification of strain gaug		
	* *	auge factor, Temperature compensation	, Wheatstone	
	bridge circuit.			
	_	urement: Resistance Temperature Dete	` ' '	
	-	Laws of thermocouples, Resistance ther	mometers &	
	Thermistors, Optica	1.	1 . 1	
		nent: Diaphragm pressure gauge, Bo		
		Gauge, Piezoelectric sensor, Tactile senso		
		t: Hot wire anemometer, Thermal f		
	_	w meter, Ultrasonic flow meter, Turbine ystem (DAS) and FFT analyzer.	meter.	
UNIT-III	Design of Experim	•		(06 Hours)
UN11-111		e model, Fixed effects model, Estimation	of the model	(vo mours)
		adequacy checking, The normality assur		
	-	ign, The general factorial design. Fraction	•	
		irface methodology. Taguchi method.	onar ractoriar	
UNIT-IV		sis in Experiments		(06 Hours)
	•	its, Analysis of experimental data and d	etermination	(30 223025)
		nties in experimental investigation, Unc		
		rameters like pressure, temperature, flo		
	-	Estimation of uncertainty by Partial Di		
		ombining uncertainty components. Stu		
	method.			
UNIT-V	Computer Aided I			(06 Hours)
	Geometric transfor	mations-2D and 3D translation, Scalin	ng, Rotation,	
		ction, Homogeneous transformations.		
	_	sentation of curves, Wire frame models		
		e representation of synthetic curves, I	Hermit cubic	
	splines, Bezier curv			
		Mathematical representation surfac		
	model, Surface	1		
	representation of	surfaces, Plane surface, Rule surface,	Surface of	

	revolution, Tabulated cylinder.			
UNIT-VI	Fatigue Failure	(06 Hours)		
	High cycle and low cycle fatigue, Fatigue design models, Fatigue			
	testing, Fatigue mechanisms, General S-N behavior, Factors			
	influencing S-N behavior, S-N curve representation and			
	approximations, Constant life diagrams, Fatigue life estimation using S-			
	N approach, Modes of mechanical failure, Review of failure			
	theories for ductile and brittle materials including Mohr's theory and			
**************************************	modified Mohr's theory, Yield surface for Isotropic materials	(0 C TT)		
UNIT-VII	Composites Definition of composite metanial Classification based on metain and	(06 Hours)		
	Definition of composite material, Classification based on matrix and			
	topology, Constituents of composites, Interfaces and Inter-phases,			
	Distribution of constituents, Composites Fabrication, Fracture & Safety of Composite and Introduction to Nanotechnology, Manufacturing and			
	Characterization of Nano-composites.			
UNIT-	Advanced Machining Processes	(06 Hours)		
VIII	Theory and Numerical analysis of abrasive jet machine, Abrasive flow	(vo iivais)		
· 	machining, Ultrasonic machining, Electrical Discharge Machining(EDM),			
	Electro Chemical Machining, Electro Chemical Discharge Machining (ECDM)			
	, Vibro ECDM, Dry and Near dry EDM, thermal Energy Methods material			
	pressing, LASER machining, Electron Beam Machining, Plasma arc			
	machining, Physical vapour deposition and chemical vapour deposition, high			
	energy rate forming and Electroforming.			
UNIT-IX Advanced Thermodynamics		(06 Hours)		
	Equation of State, Equation of state for real gases, generalized			
	Compressibility chart, Law of corresponding states, Properties of Pure			
	Substances, Phase change process of pure substances, PVT			
	surface, P-V&P-T diagrams, Laws of thermodynamics, Increase of			
	entropy principle, T-ds relations and entropy generation.			
UNIT-X	Advanced Heat Transfer & Introduction to CFD	(06 Hours)		
	Analytical solutions for temperature distribution, Problems related to			
	anisotropic materials, Transient conduction, Principle of fluid flow and			
	Convective heat transfer. Concept of velocity and thermal boundary			
	layers, Boundary layer approximations and special conditions. Introduction to CFD: Governing equations, Hyperbolic, Parabolic			
	&Elliptic systems; Numerical methods such as Finite difference, Finite			
	volume, upwind and down-wind schemes. Implicit and explicit methods.			
	Properties of numerical solutions (Consistency, Stability, Conservation,			
	Convergence and Accuracy).			
Text Books	(References:			
	D. S., Mechanical Measurement & Control, Metropolitan Book Co. Pvt. Ltd. New I	Delhi, 2007		
Deh K	alyanmoy, Optimization for Engineering Design: Algorithms and l			
,	Learning Pvt. Ltd., 2004			
	3 Hume K. J., Engineering Metrology, Macdonald, 1950			

	Pearson Prentice Hall, 2007
5	Montgomery Douglas C., Design and analysis of experiments, Wiley, 2008
6	Zeid Ibrahim &Siva subramanian R., CAD/CAM Theory and Practice by, Tata Mc Graw Hill international.
7	Chandrupatla Tirupathi K. and Belegundu Ashok D, Introduction to finite elements in engineering
8	Gokhale Nitin S., Deshpande Sanjay S., Bedekar Sanjeev V and Thite Anand N., Practical Finite Element Analysis. Finite to Infinite, Pune.
9	Boothroyd G. and Knight W. A., Fundamentals of Machining and Machine Tools, CRC-Taylor and Francis, 2006
10	K. S. Fu, R. C. Gonzalez and Lee C.S.G., ROBOTICS: Control, Sensing, Vision and Intelligence, McGraw-Hill, 1987.
11	B. K. P. Horn, Robot Vision, MIT Press, Cambridge, 1986.
12	KorenY., Robotics for Engineers, McGraw Hill, 1985.
13	Mechatronics, HMT, Tata McGraw-Hill, New Delhi, 1988.
14	Deb, S. R., Robotics technology and flexible automation, Tata McGraw-Hill, New Delhi, 1994.
15	Boltan, W., Mechatronics: electronic control systems in mechanical and electrical engineering, Longman, Singapore, 1999.
16	John D. Anderson., <i>Jr.</i> , Computational Fluid Dynamics-The Basics with applications, McGraw-Hill, Inc. New York.
17	Frank P. Incropera., <u>David P. DeWitt</u> ., Fundamentals of Heat and Mass Transfer-5 th Ed John Wiley
18	Holman J. P., Heat Transfer. McGraw-Hill Book Company
19	Thermodynamics. Sonnatag & Van Wylen. John Wiley & Sons
20	Thermodynamics for Engineers/Doolittle-Messe / John Wiley & Sons
21	Murty, B. S., et al. Textbook of nanoscience and nanotechnology. Springer Science & Business Media, 2013.
22	Kaw, Autar K. Mechanics of composite materials. CRC press, 2005.

2.	Numerical methods for engineers / Steven C. Chapra, Raymond P. Canale			
3.	Fundamentals of Machining and Machine Tools, G. Boothroyd and W. A. Knight, CRC-Taylor			
	and Francis, 2006			
4.	Fluid Mechanics. FM White. Boston: McGraw-Hill Book Company			
5.	Fundamentals of Heat and Mass Transfer-5 th Ed. Frank P. Incropera. John Wiley			
6.	Heat Transfer. J.P Holman McGraw-Hill Book Company			
7.	Mechanical Vibration. G. K. Grover			
8	Design of Machine Elements V. B. Bhandari			